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DETERMINATION OF THE THERMAL CHARACTERISTICS OF A TWO-DIMENSIONAL */27
LAMINAR BOUNDARY LAYER IN A COMPRESSIBLE GAS WITHOUT A
LONGITUDINAL PRESSURE GRADIENT, IN THE VICINITY
OF THE FORWARD STAGNATION POINT

I.I.Suksov g 3& ?{

Simple approximate solutions in finite form are derived for
the determination of friction, recovery, and heat transfer
coefficients for a plane plate in the vicinity of the forward
stagnation point, applicable to the cases of high aerodynamic
heating in the two-dimensional boundary layer of a compres-
sible gas without pressure gradient. The solutions are ex-
tended to the boundary layers of bodies of revolution, over

the Stepanov-Mangler transformation.

Current theoretical works on the boundary layer strive to reflect as fully
as possible the effect of high aerodynamic heating on friction and heat transfer.
For this purpose, more accurate relationships are used for the viscosity coef-
ficient, under consideration of the variability in specific heat and Prandtl
number as well as dissociation and ionization of gas. Coﬁsiderable attention is
devoted to an investigation of the dynamic and thermal boundary layers in the
absence of a pressure gradient (in particular on a plane plate) and in the region
of the forward stagnation point. In the case of a laminar boundary layer, the
problem often reduces to a system of ordinary differential equations (self-
mapping or similar solutions) which is sometimes written in integral form

(Bibl.2, 8, 9). The equations are solved numerically, usually by the method of

% Numbers in the margin indicate pagination in the original foreign text.
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successive approximations.

Along with these solutions it is useful to develop approximate methods
which, in addition to satisfactory accuracy, possess great simplicity and yield
results in a finite form. This would facilitate a study of the effect of vari-
ous independent parameters in a sufficiently wide range of variation.

K3

In this work, simple approximate solutions are obtained in finite form,

[=

yielding adequate results in determinations of friction, recovery, and heat-
transfer coefficients for the case of a plane plate in the vicinity of the for—
ward stagnation point.

It may be assumed that analogous solutions can be derived when taking into

account the effects associated with high aerodynamic heating.

1. Approximate ILinearization of Boundary-layer ations

Using the conventional formula for the viscosity coefficient,

- : (1.1)

the equation of a two—dimensional steady laminar boundary layer in Dorodnitsyn's

(Bibl.5) independent variables [28
g=5._de, ﬁzj—’—-dy, : (1.2)
.‘ .
L

will take the form

o, L a Y o
o T T T K (2.3)
du , Ow :
wta=% (2.1)
Q< @g V’BK d20 * - @" (105
ude+waq Pr +”K(l o’ )

where




x and y = coordinates from which the first is read off along the surface
from the forward stagnation point and the second along the
outward normal to the surface,

u and v = corresponding velocity components,

D
we= Y 4 wsuan

’

T P ox
P, P, T = pressure, density, and temperature respectively,
2
R , 8= -—L, Ty = T + —2 = stagnation temperature,
T*ﬁ - T—‘,\Lﬁ ZICP
2 _ u®
« 2dcyTyg °
b = viscosity coefficient, v = —‘;'-, K=(1+C)0, +C)yif,, C =
S
Tyg

C = a constant (for air, C = 114%K),
I = mechanical equivalent of heat,
cp = specific heat at constant pressure,

MeCp
Pr = . = Prandtl number,

k = coefficient of thermal conductivity,
du5

) dg

Indexes:

* = stagnation,

8 = outer limit of the boundary layer,

w = wall,

Tn deriving egs.(1.3) - (1.5) and hereafter we will use also the equation
of state of an ideal gas:
p=ReT (1.6)

(which holds also for the stagnation parameters) and the Bernoulli equation:

£ =(1 "3')"::‘» (1.7)

Doy




where
x = —g—s—, cy = specific heat at constant volume.
The quantities c,, cv, and Pr are considered to be constant. The Prandtl
number is assumed to be close to unity.
Let us examine the solution of egs.(1l.3) - (1.5) for a plane plate and /29
in the vicinity of the forward stagnation point, using a representation of a
boundary layer of finite thickness and assuming the thicknesses of the dynamic

and thermal boundary layers to be identical. The boundary conditions will be

g==w=—0, Oemly or =0, if 3=0,

213

= ), 1;-:=o. 0=1, g=0,5if n=A (). (1.8)

Here, M(E) is the arbitrary thickness of the boundary layer in variables

[eq.(1.2)]. Let us introduce the variables:

P)=-"—, =2 (1.9)

y

Let us approximately express all terms of egs.(1.3) and (1.5), except terms

2
with ::‘; and -%ﬂ—i—, by means of the velocity and stagnation temperature pro-

files, whose form is known beforehand:

a - = T, ooy 2
:;-:?(7‘), Tat =¥ (7'9 B" o, Pl'). (1°1O)

R

We will express w by integrating the continuity equation (1.4) provided that

wlT= = 0. Purthermore, we will use the identity
7 dn=2% — [vdn,

and reduce egs.(1.3), (1.5), and the boundary conditions (1.8) to the form

—

i v —d . . "_. —
Po o BO—F —(u,c+o.5a.C')?Jvh, (1.11)

o l—c:

L



F1

2 o Pr 4050 )2 (§da+ (1 P Y+ |

o & )
~+Pray CQ.;:.};.{;_ +2 Pn{l‘&v:f 3. (1.12)
at "l=0u ,=01 Gty ’
at ;=l' 9=1.9 ,'-0' "1’%‘0' ‘ (1.13)
Here, ‘
A3 €@K o d; o &y §
= y C’_‘—_-—, '=:~—:_—, . — -
o B T =T

Equations (1.11) and (1.12) are linear with respect to the unknown func-
tions © and © and are readily integrated in a finite form if we prescribe the
functions o and 9 as polynomials of M.

The two additive functions that appear on integration are determined by /30
the conditions: ®'(1) = O and ©(0) = 1, Satisfaction of still another necessary
condition ©(1) = 1 furnishes an ordinary differential equation for (.

The approximating expressions (1.10) must satisfy all conditions (1.13) for
© and 6. Furthermore, their selection is subject to additional conditions re-
sulting from egs.(1.11), (1.12) since these represent the conditions of vanish-

" ing of the derivatives of egs.(1.10) at =1,

In the presence of heat transfer, the equation for { will have the form

1 .
‘. o — "‘l-—.ﬁ_ ' 'ng‘ : (1.]-Z+)

where
s, 8, ss, d = constants dependent on the selection of the functions

[eq.(1.10)].

2. The Heat-Insulated Plape Plate

In this case, ug = const, ug = 0.




The boundary condition for the dimensionless temperature at the wall is

')
— ==, (2.1)
o e

The expressions (1.10) will take the form

=050 —w), ; (2.2)
8=1—0.75(1 —Pe{(1 —3n'+277). | (2.3)

The profile (2.2) was used elsewhere (Bibl.7) in generalizing the approx-
imate solution (Bibl.1l) for a compressible gas at Pr = 1 and in the absence of
heat transfer between the gas and the body. It satisfies the boundary condi-

tions (1.13) and also the condition ©"(0) = O resulting from eq.(1.11). The
profile (2.3) obeys the boundary conditions (1.13) [the condition (2.1) is taken

at the walll, and also the condition

| —a50-Prd,
o3 _13"'.

(2.4)

which follows from eq.(1.12) with the use of eq.(2.2).
Equation (1.,11), with consideration of eg.(2.2), takes the form

a3
on

3a, U - -
=2 (67— Ta 7). ,

Solving this equation with the boundary conditions (1.13) for «, we find
the velocity profile
= £ — 1.6217— 1.091%! +-0.505%¢ — 0.090% (2.5)
s
and the equation for determining (

@ l=d,” (2.6)
where d = 23,27. .

Integrating eq.(1.6) in the case of {(0) = O and returning to the /31




variable x, we obtain

c=';‘:—(1-az)-'—§ix.77

(2.7)
For the local coefficient of friction cs = 2T"2 we obtain, as before
Pgls

(Bibl.7), the expression

ViResc;=0672, (2.8)

U X
where Re, = - In deriving eq.(2.8), we used the relations
5

=t (G

egs.(2.5), (2.7), and also the relations
1 ' 2—x

Py =pog (1 —a} , Kv,=v(1 ’—°§)'—l,

which follow from egs.(1.1), (1.6), (L.7).
The proposed solution agrees well with the self-mapping solution (Bibl.é)
which, on the right-hand side of eq.(2.8), gives a value of 0.66L.
Equation (1.12) in this case takes the form
m 2Cayr _ _Pre(1—Pr)
=== POREY —

— 27T — 4,57 -+ 4,5%%):

a2ul (27;.":- ;

b

a6

M
find the stagnation temperature profile

Integrating it for the cases = 0, Gl'ﬁ =, = 1 and using eq.(2.6), we

=1—(1—Ppai[Pi(y) —Pr- P, (;I.)L (2.9)

where  EP(m)=1—2259+4 157 —0.25%,,
Py (7)—=0.616 — 1.9637 - 1.309%¢ + 015677 — 0.117%.

Setting M = O in eq.(2.9), we find the dimensionless temperature of the

surface




, L
bq= 2Lt — (1 —P1) (1—0616
- s il

Pr)e}, ,’ (2.10)

b er T

and the recovery coefficient

p 2= T0 4 (1 —Pr) (1 —0616Pr). 11 (2.11)

Ty—Th
For air (Pr = 0.72), we obtain r = OSI,A
Figure 1 gives a comparison of the values of r for a plane plate caliculated
by eq.(2.11) (curve 1) with the results of the self-mapping solution (Bibl.6)
(curve 2) and with the data of the calculation by the known formula r = ,/Fr

(curve 3). Satisfactory coincidence is obtained in the range of Pr = 0.65 - 1.
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3. Heat Trangfer on a Plane Plate
In this case, we will take the condition for the wall temperature
O me="te. (3.1)

For an approximate solution of the problem, let us use the velocity pro-

file (2.2) and the stagnation temperature profile

T=1—05(1—ty) (2 — 37 +7) — 11251 —@n)a} 1 — 20+ ). (3.2)




- found with respect to the conditions (1.13) for 6 [the condition (3.1) is taken
on the walll and to the condition (2.4).

Equations (2.5) - (2.8) remain valid here.

Limiting ourselves to the case of the absence of a longitudinal temperature

gradient, we can represent eq.(1.12) in the form

";= "““ 1(1—0.)(11251.t—13121,‘+,o

- Pr)aa(084411’ =3 375qx+2394f+0562¢«-0422q-).

Integrating the equation written for the conditions G!ﬁ:o = Oy, 9!";'1:0 =1,

we obtain

0 m 0ot (1 —80) 7 — (1 — Pr)e} (1 — )+ 05 Pr - d[(1 — 60 Quf
— 1 —P)e} Qs

a— o . -t - ' —-— '3
_ Qu(m=0.0537—0.094x* +-0.0447° — 0.003% (3.3)
Qs_(’q")=0.013i'~i;0.0705‘—0.169;f5 -4 0.080%* 4- 0.013%F —0.60873.
Proceeding from a determination of the local Nusselt number
Nop—m—2
kt (rm."' rg‘) :
(q is the thermal flux) and using eq.(2.10) as well as the expressions
T k.r-.(t--h
q=tw _),-o “e-a i 0. o, P, |
ub@.@@r) ( =-(l+0.622 Pr) (1 ~'o,)_ /33
(1 +-0.150Pr) (1 — PO}, |
kW ew . -
e "1 a? [the latter is obtained because of the constancy of ¢, Pr, and
o Bt}
egs.(1.1)], we finally obtain
Nug ' , e 5 A
Frbandtomy G4)
where




At Pr = 1, a; = 1. Assuming a, = 1 (in view of the proximity of Pr to 1),
we write in place of eq.(3.4):

Nu
—25 = 0.336/ (Pr)
VRe, St

(3.5)

| ' where - !+0;6§2 Pr

J(Pr) T3 .
The value 0.336f (Pr) for Pr = 0.6 - 1.0 differs little from the value of
0.332/PT used in the theory of heat transfer (Bibl.10). The values of these

quantities are shown in Fig.2.
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On the basis of egs.(2.8) and (3.5) we obtain

Rey 2
N“: [ (Pl" ‘

Figure 2 shows that, in the range of Prandtl numbers under consideration,

10



the function £(Pr) differs little from ¥Fr, i.e., for the given solution the
Reynolds analogy between friction and heat transfer is well satisfied.
N
When using the local heat-transfer coefficient o, = —ka—;-l—x— the specific

thermal flux will be expressed by the formula
g=02(T1~ To).
The coefficient oy is expressed in terms of the flow parameters and the
Stanton number hy:

kﬂ: - WC’P‘ ua hx )

where
hy= “L . Nuy

Pr Rex )

Taking into account (3.5) we obtain

fy = 28007 (Pr)
PrVRe,

For air, considering Pr = 0.72, we have

Ay e 0410
¥ Re,

In the known formulas for h,, a value of 0.408 is substituted for 0.410.
let us note the following:

Applying the condition (2.1) to the profile (3.3) will yield

(1 — Pr) (1 — 0,150 Pr) a} ‘
1 4 0622 Pr X (3.6)

.m.z —_—

The corresponding recovery coefficient is

___(1—Pn 1—0.150 Pr)

re=1 14062 Pr o (3.7)

If, in eq.(3.4) the expression (3.6) is used instead of eq.(2.10), then

1



a, = 1 regardless of 6., o, and Pr.
For comparison, Fig.l shows the results of calculating r from eq.(3.7)

(curve 4). It is obvious that this formula is less accurate than eg.(2.11).

L, Heat Transfer in the Vicinity of the Forward Stagmation Point
In this case, let us set, as usual ug = Bx, ¢f = O (8 is a constant).
Then eq.(1.1l)) takes the form
AUt —ss(l— )=
Considering 6, = const, we find the solution of this equation:

-t 4
o K Rle—n(—)

—cons. |

whence Ct = O,

]
The form parameter A = —uig——é- in this case is equal to
1l- 0'5
de 5§ —53(1 —bgy) const. {

To solve egs.(1.11), (1.12) let us use polynomials of the fourth degree as

the functions © and ©: o : ‘
?=4n—65 4n* — 7, (4.1)
b=0g (1 —ta) (2 —29'+v1). | (4.2)

The coefficients of these polynomials are determined from the conditions /35
(1.3) and from the auxiliary conditions: "(1) = o™1) = on(1) = 0.

In the case under consideration egs.(1.11), (1.12) take the form
: >
e St e

— 11,20 45,60 — 169"+ 0,27F), & (4.3)
B prede(l —By) (49— 4 — 107+ 19,67 —
aq!
— 147* 4 5,297 —0,8%°). | o (hel)

12




Integrating eq.(4.3) and using the conditions (1.13) for ®, we obtain

? =% (R (1) Y+ R: (1)}, (4.5)
1

0,0244 + 006670, ' . o (4.6)

Ap ==

where

Ri (3) = 0.3 — 0.5%> +0.33337 — 0.17° +0.0333%,
R (n)==0.07787— 0.3333%* 4 0.6667%* — 0.7%° +-0.57° —
— 0.2667%" + 0.17® — 0.02227 - 0.002277°. i

Integrating eq.(4.L) for the conditions: 9"1']':1, = 0., G!ﬁq =1 will yield

A0-+(1—-°-)l(l+0.08Pf1.):';—PrA,R,(;)]' o (4.7)
e

088339 — 0.27° —0.3333%* 4 0. 46671:‘--!3 95':' +
+0.0722%" —0.00897'. ‘

The specific thermal flux is

¢=kw( ) *-T.s ® (8, Pr), '

where

A..l/ by , ©(0, Pr)-(—-—) = (1 —0g) (14

»-0

As usual, let us assume kg = Kyg, Tact = Tyg in the vicinity of the forward

stagnation point. We will also consider that, as a consequence of eq.(l.l) and

of the constancy of c, and Pr, we have 1}: = O0y. Then, for the Nusselt number
3
Nu ==-_.-___q.£_..._._...
- kg (T — Ty

we obtain the relation

Nu__ 1008Prly / o
e bty )/ B, .8)
where
— BL dag
a§ = ~——————= = value of the quantity in the vicinity of /36

T A/ZICPT.)(@
13




the stagnation (critical) point,

X where 4 is the characteristic dimension,
1

as subscript, conditions of the relative flow,

li

X

[oo]

The heat transfer coefficient o is comnected with the Nu number by the re-

Jation
: ‘a N‘ .

-
We note that in eq.(4.8) the quantity @5 is half the quantity in the
er
analogous formula by Kalikhman (Bibl.3). In essence, these formulas differ only
by the coefficients; in the latter, the coefficient is N; = 0.570 Pr°'4, whereas

in the former it is

where at 6, = 1 (then, Yo = 10.96), it equals 0.302 (1 + 0.877 Pr).

We should also mention the solution of the problem of forced laminar con-
vection from a cylinder close to the forward stagnation point (Bibl.10) which
agrees well with the experimental data. In this solution, the factor o (Pr) co-

incides with N, at Pr = 0.6 - 1.1.

M 1 =
e A -
[ BEERERY == %
T . =
P P I R T
. Q6 ['74 . 037 g9 » 1}
Fig.3

A comparison (Fig.3) shows the satisfactory agreement of the quantities N,

and Ng.




By means of the well-known Stepanov-Mangler transformation, the solutions

are readily extended to the boundary layer of bodies of revolution (Bibl.4, 6).
BIBLIOGRAPHY

1. Targ, S.M.: Basic Problems of the Theory of laminar Flows (Osnovnyye
zadachi teorii laminarnykh techeniy). GITTL, Moscow-Leningrad, 1951.

2. Lunev, V.V.: Laminar Boundary layer of a Compressible Gas in the Presence
of Large Temperature Gradients (laminarnyy pograniclnyy sloy szhimayemogo
gaza pri boltshikh perepadakh temperatur). Prikl. Mat. i Mekhan., Vol.XX,
No.3, 1953.

3. Kaliklman, L.Ye.: Heat Transfer in the Vicinity of the Forward Stagnation
Point in an Axisymmetric and Two-Dimensional Flow of Gas (Teploobmen v
okrestnosti peredney kriticheskoy tochki v osesimmetrichnom i ploskom
potoke gaza). Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, No.3, 1955.

L. Avduyevskiy, V.S.: Laminar Boundary Layer in a Compressible Gas on a Porous
or Evaporating Surface in the Presence of Small Longitudinal Pressure
Gradients (Laminarnyy pogranichnyy sloy v szhimayemom gaze na poristoy
ili isparyayushcheysya poverkhnosti pri malykh prodoltnykh gradiyentakh
davleliya). Tr. MAP, Oborongiz, Moscow, 1956.

5. Dorodnitsyn, A.A.: Laminar Boundary Layer in a Compressible Gas. Col-
lection of Theoretical Works on Aerodynamics (lLaminarnyy pogranichnyy sloy
v szhimayemom gaze. Sbornik teoreticheskikh rabot po aerodinamike).
TsAGI, Oborongiz, Moscow, 1957.

6. Loytsyanskiy, L.G.: Fluid and Gas Mechanics (Mekhanika zhidkosti i gaza).
GITTL, Moscow, 1957.

7. Suksov, I.I.: Calculation of a laminar Boundary Layer without the Use of /37

15




NASA TT F-10,217

Integral Relation. Part II (K raschetu laminarnogo pogranichnogo sloya bez
primeneniya integralftnykh sootnosheniy.Chast! vtoraya). GKAT SSSR, 1958.

8. Bashkin, V.A. and Solodkin, Ye.Ye.: Calculation of a Laminar Boundary Layer
in the Absence of a longitudinal Pressure Gradient and in the Vicinity of
the Forward Stagnation Point of a Body, with Consideration of Thermo-
chemical ReactionsOccurringin the Gas at High Temperatures (Haschet
laminarnogo pogranichnogo sloya pri otsutstvii prodol'nogo gradiyenta
davleniya i v okrestnosti peredney kriticheskoy tochki tela s uchetom
termokhimicheskikh reaktsiy, protekayushchikh v gaze pri vysokikh tempera-
turakh). TsAGI, No.777, 1960.

9. Moore, L.: Solution of Laminar Boundary-layer Equations with Consideration
of Dissociation for a Compressible Fluid with Varying Physical Properties.
Mekhanika, Collection of Translations and Review of Foreign Periodical
Literature, Vol.5, No.21, 1953.

10. - State of the Art of the Aerodynamics of High Velocities (edited by
L.Howarth), Vol.1l, translated from English, Izd. Inostr. Lit., Moscow,
1956.

Translated for the National Aeronautics and Space Administration by the
O.W.Leibiger Research Laboratories, Inc.

16



